题目
如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,连接EF,EF与AD相交于点G.
(1)
求证:AD是EF的垂直平分线;
(2)
若△ABC的面积等于16,AB+AC=8,求ED.
答案: 证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,{AD=ADDE=DF,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,又∵DE=DF,∴AD是EF的垂直平分线;
解:∵S△ABD+S△ACD=S△ABC,∴12•AB•DE+12•AC•DF=16,∵DE=DF,AB+AC=8,∴12×DE×8=16,∴DE=4.