题目

已知:如图,点A在原点左侧,点B在原点右侧,且点A到原点的距离是点B到原点距离的2倍,AB=15. (1) 点A表示的数为,点B表示的数为; (2) 点P从点A出发,以每秒1个单位长度的速度向点B方向运动;同时,点Q从点B出发,先向点A方向运动,当与点P重合后,马上改变方向与点P同向而行且速度始终为每秒2个单位长度。设运动时间为t秒。 ①当点P与点Q重合时,求t的值; ②当点P是线段AQ的三等分点时,求t的值. 答案: 【1】-10【2】5 解:①由题意得 t+2t=15 ∴t=5, ∴当点P与点Q重合时,t的值是5; ②点Q往左运动时,点P表示的数是-10+t,点Q表示的数是5-2t, 此时AP=t,PQ=15-3t,AQ=15-2t, 当AP= 13 AQ时, t= 13 (15-2t), ∴t=3; 当PQ= 13 AQ时, 15-3t = 13 (15-2t), ∴t= 307 ; 点Q往左运动时,点P表示的数是-5+(t-5)=t-10,点Q表示的数是-5+2(t-5)=2t-15, 此时AP=t,PQ=t-5,AQ=2t-5, 当AP= 13 AQ时, t= 13 (2t-5), ∴t=-5(舍去); 当PQ= 13 AQ时, t-5= 13 (2t-5), ∴t=10; ∴当点P是线段AQ的三等分点时,t的值是3秒或 307 秒或10秒.
数学 试题推荐