题目
《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表: 喜欢《最强大脑》 不喜欢《最强大脑》 合计 男生 15 女生 15 合计 已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4 ( I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由; ( II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望. 下面的临界值表仅参考: P(K2≥k0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (参考公式:K2=,其中n=a+b+c+d)
答案:解:(Ⅰ)由题意知列联表为: 喜欢《最强大脑》 不喜欢《最强大脑》 合计 男生 45 15 60 女生 15 25 40 合计 60 40 100 K2=≈14.063>10.828, ∴有99.9%的把握认为喜欢《最强大脑》与性别有关. (II)X的可能取值为0,1,2, P(X=0)==, P(X=1)==, P(X=2)==, ∴X的分布列为: X 0 1 2 P EX==.