题目

如图:在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为           ; 答案: 解析:∵△ABC是等腰三角形,D为底边的中点, ∴AD⊥BC,∠BAD=∠CAD, ∵∠BAC=120°, ∴∠BAD=60°,∠ADB=90°, ∵AE是∠BAD的角平分线, ∴∠DAE=∠EAB=30°. ∵DF∥AB, ∴∠F=∠BAE=30°. ∴∠DAF=∠F=30°, ∴AD=DF. ∵AB=9,∠B=30°, ∴AD=, ∴DF=.
数学 试题推荐