题目

我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x元/件(x≥6,且x是按0.5元的倍数上涨),当天销售利润为y元. (1)求y与x的函数关系式(不要求写出自变量的取值范围); (2)要使当天销售利润不低于240元,求当天销售单价所在的范围; (3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.   答案:【解答】解: 由题意 (1)y=(x﹣5)(100﹣×5)=﹣10x2+210x﹣800 故y与x的函数关系式为:y=﹣10x2+210x﹣800 (2)要使当天利润不低于240元,则y≥240, ∴y=﹣10x2+210x﹣800=﹣10(x﹣10.5)2+302.5=240 解得,x1=8,x2=13 ∵﹣10<0,抛物线的开口向下, ∴当天销售单价所在的范围为8≤x≤13 (3)∵每件文具利润不超过80% ∴,得x≤9 ∴文具的销售单价为6≤x≤9, 由(1)得y=﹣10x2+210x﹣800=﹣10(x﹣10.5)2+302.5 ∵对称轴为x=10.5 ∴6≤x≤9在对称轴的左侧,且y随着x的增大而增大 ∴当x=9时,取得最大值,此时y=﹣10(9﹣10.5)2+302.5=280 即每件文具售价为9元时,最大利润为280元  
数学 试题推荐