题目

对于抛物线y=ax2﹣4ax+3a下列说法:①对称轴为x=2;②抛物线与x轴两交点的坐标分别为(1,0),(3,0);③顶点坐标为(2,﹣a);④若a<0,当x>2时,函数y随x的增大而增大,其中正确的结论有(  )个.                A.1个                             B.2个                              C.3个                              D.4个 答案:B【考点】二次函数的性质.                                                                                  【分析】根据对称轴公式x=﹣,进行计算即可;令y=0,求得方程ax2﹣4ax+3a=0的解即可;根据顶点坐标公式计算即可;由a<0,得出对称轴的左侧,函数y随x的增大而增大.                                       【解答】解:对称轴x=﹣=﹣=2,故①正确;                                                 令y=0,得ax2﹣4ax+3a=0,解得x=1或3,                                                            ∴抛物线与x轴两交点的坐标分别为(1,0),(3,0),故②正确;                         ==﹣1,                                                                          ∴顶点坐标为(2,﹣1),故③错误;                                                                   当a<0,当x<2时,函数y随x的增大而增大,故④错误,                                         故选B.                                                                                                                                                                                                                                      
数学 试题推荐
最近更新