题目
已知数列an满足a1=,anan+1=()n,n∈N*.(1)求数列{an}的通项公式;(2)设a>0,数列bn满足b1=,bn+1=,若|bn|≤an对n∈N*成立,试求a的取值范围.
答案:解:(1)=,∴=. 又∵a1=,a1a2=·,∴a2=. ∴a1,a3,a5,…,a2n-1,…及a2,a4,…,a2n,…均为公比为的等比数列.∵a2n-1=()2n-1,a2n=()2n,∴an=()n.(2) |b1|≤||≤或a≥2.现证:a≥2时,|bn|≤an对n∈N*成立.①n=1时,|b1|≤a1成立;②假设n=k(k≥1)时,|bk|≤ak成立,则n=k+1时,|bk+1|=≤≤≤, 即n=k+1时,|bk+1|≤ak+1也成立.∴n∈N*时,|bn|≤an. ∴a的取值范围是[2,+∞).