题目

我市某工艺厂为配合奥运会,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据: 销售单价x(元/件) …… 30 40 50 60 …… 每天销售量y(件) …… 500 400 300 200 …… (1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式; (2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价) (3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大? 分析 (1)从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以y与x之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y与x之间是一次函数的关系,然后设出一次函数关系式,求出其关系式. (2)利用二次函数的知识求最大值. 答案:解 (1)画图如图;   由图可猜想y与x是一次函数关系, 设这个一次函数为y=kx+b(k≠0) ∵这个一次函数的图象经过(30,500)、(40,400)这两点, ∴,解得 ∴函数关系式是:y=-10x+800. (2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得 W=(x-20)(-10x+800) =-10x2+1 000x-16 000 =-10(x-50) 2+9 000 ∴当x=50时,W有最大值9 000. 所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9 000元. (3)对于函数 W=-10(x-50)2+9 000, 当x≤45时,W的值随着x值的增大而增大,销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.
数学 试题推荐