题目
已知函数f(x)=1+sin2x,g(x)=sin(x+),x∈[-,].(Ⅰ)求满足f(x)=g(x)的x值的集合;(Ⅱ)求函数的单调递减区间.
答案:解:(Ⅰ)f(x)=(sinx+cosx)2=[sin(x+)]2=[g(x)]2由f(x)=g(x),得g(x)=0,或g(x)=1∴sin(x+)=0,或sin(x+)=1∵,∴∴x+=0,或x+=,或x+=x=-或x=0或x=所求x值的集合为{-,0, }(Ⅱ)由(Ⅰ)知,sin(x+)(x≠)解不等式2kπ+≤x+<2kπ+,k∈Z,得2kπ+≤x≤2kπ+∵-≤x≤且x≠,∴≤x≤∴函数的单调递减区间为[,].