题目
设数列{an}的首项a1=1,前n项和为Sn,满足关系式3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,…).(1)求证数列{an}是等比数列;(2)设数列{an}的公比为f(t),作数列{bn},使b1=1, bn=f()(n=2,3,4,…),求bn.
答案:(1)证明:由S1=a1=1,S2=a1+a2=1+a2得,3t(1+a2)-(2t+3)=3t.解得,a2=∴又①-②得,3tan-(2t+3)an-1=0,∴=(n=2,3,4,…).所以{an}是以1为首项,为公比的等比数列.(2)解:∵f(t)==+,∴bn=f()=+bn-1.∴{bn}是以1为首项,为公差的等差数列,∴bn=1+(n-1)=n+.