题目
设数列{an}的前n项和Sn=na+n(n-1)b,(n=1,2,…),a、b是常数且b≠0. (1)证明:{an}是等差数列. (2)证明:以(an,-1)为坐标的点Pn(n=1,2,…)都落在同一条直线上,并写出此直线的方程. (3)设a=1,b=,C是以(r,r)为圆心,r为半径的圆(r>0),求使得点P1、P2、P3都落在圆C外时,r的取值范围.
答案:(1)证明略 (2)证明略(3)r的取值范围是(0,1)∪(1,-)∪(4+,+∞) 解析: 由条件,得a1=S1=a,当n≥2时, 有an=Sn-Sn-1=[na+n(n-1)b]-[(n-1)a+(n-1)(n-2)b]=a+2(n-1)b. 因此,当n≥2时,有an-an-1=[a+2(n-1)b]-[a+2(n-2)b]=2b. 所以{an}是以a为首项,2b为公差的等差数列. (2)证明:∵b≠0,对于n≥2,有 ∴所有的点Pn(an,-1)(n=1,2,…)都落在通过P1(a,a-1)且以为斜率的直线上。 此直线方程为y-(a-1)= (x-a),即x-2y+a-2=0. (3)解: 当a=1,b=时,Pn的坐标为(n,),使P1(1,0)、P2(2, )、P3(3,1)都落在圆C外的条件是 由不等式①,得r≠1 由不等式②,得r<-或r>+ 由不等式③,得r<4-或r>4+ 再注意到r>0,1<-<4-=+<4+ 故使P1、P2、P3都落在圆C外时,r的取值范围是(0,1)∪(1,-)∪(4+,+∞).