题目

 (本小题满分16分) 已知数列满足前项和为,. (Ⅰ)若数列满足,试求数列前项和; (Ⅱ)若数列满足,试判断是否为等比数列,并说明理由; (Ⅲ)当时,问是否存在,使得,若存在,求出所有的的值; 若不存在,请说明理由. 答案:解:(Ⅰ)据题意得,所以成等差数列,故……………4分 (Ⅱ)当时,数列成等比数列;当时,数列不为等比数列……………………5分 理由如下:因为, 所以,故当时,数列是首项为1,公比为等比数列; 当时,数列不成等比数列 ………………………………………………………………… 9分 (Ⅲ)当时,,………………………………10分 因为=() ……………………………………………12分 ,,设, 则,,且, 在递增,且, 仅存在惟一的使得成立……………………………………………………16分
数学 试题推荐