题目
如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是( ) A. B. C. D. ﹣1
答案:D解:连接AC1, ∵四边形AB1C1D1是正方形, ∴∠C1AB1=×90°=45°=∠AC1B1, ∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1, ∴∠B1AB=45°, ∴∠DAB1=90°﹣45°=45°, ∴AC1过D点,即A、D、C1三点共线, ∵正方形ABCD的边长是1, ∴四边形AB1C1D1的边长是1, 在Rt△C1D1A中,由勾股定理得:AC1==, 则DC1=﹣1, ∵∠AC1B1=45°,∠C1DO=90°, ∴∠C1OD=45°=∠DC1O, ∴DC1=OD=﹣1, ∴S△ADO=×OD•AD=, ∴四边形AB1OD的面积是=2×=﹣1, 故选:D.