题目

如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=|PD|. (Ⅰ)当P在圆上运动时,求点M的轨迹C的方程 (Ⅱ)求过点(3,0)且斜率的直线被C所截线段的长度. 答案:【考点】轨迹方程;直线与圆相交的性质. 【专题】计算题. 【分析】(Ⅰ)由题意P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=|PD|,利用相关点法即可求轨迹; (Ⅱ)由题意写出直线方程与曲线C的方程进行联立,利用根与系数的关系得到线段长度. 【解答】解:(Ⅰ)设M的坐标为(x,y)P的坐标为(xp,yp) 由已知得: ∵P在圆上, ∴,即C的方程为. (Ⅱ)过点(3,0)且斜率为的直线方程为:, 设直线与C的交点为A(x1,y1)B(x2,y2), 将直线方程   即:, ∴线段AB的长度为|AB|= ==. 【点评】此题重点考查了利用相关点法求动点的轨迹方程,还考查了联立直线方程与曲线方程进行整体代入,还有两点间的距离公式.
数学 试题推荐