题目

已知椭圆的左顶点为,右焦点为,右准线为,与轴相交于点,且是的中点. (1)求椭圆的离心率; (2)过点的直线与椭圆相交于两点,都在轴上方,并且在之间,且. ①记的面积分别为,求; ②若原点到直线的距离为,求椭圆方程. 答案:(1)因为是的中点,所以,即,又、,所以,所以;······················2分 (2)①解法一:过作直线的垂线,垂足分别为,依题意,,··········4分 又,故,故是的中点,∴,·······················6分 又是中点,∴,∴;·······················8分 解法二:∵,∴,椭圆方程为,,, 设,,点在椭圆上,即有, ∴ 同理,··········4分 又,故得是的中点,∴,······················6分 又是中点,∴,∴;······················8分 ②解法一:设,则椭圆方程为, 由①知是的中点,不妨设,则, 又都在椭圆上,即有即 两式相减得,解得,可得,·······················10分 故直线的斜率为, 直线的方程为,即·······················12分 原点到直线的距离为, 依题意,解得,故椭圆方程为.······················16分 解法二:设,则椭圆方程为, 由①知是的中点,故, 直线的斜率显然存在,不妨设为,故其方程为,与椭圆联立,并消去得:,整理得,(*) 设,,依题意 由解得 ·······················10分 所以,解之得,即. 直线的方程为,即·······················12分 原点到直线的距离为, 依题意,解得,故椭圆方程为.·····················16分
数学 试题推荐