题目

右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。 答案:4 -4  【考点】二次函数的实际应用-拱桥问题   【解析】【解答】解:根据题意以AB为x轴,AB的垂直平分线为y轴建立平面直角坐标系(如图), 依题可得:A(-2,0),B(2,0),C(0,2), 设经过A、B、C三点的抛物线解析式为:y=a(x-2)(x+2), ∵C(0,2)在此抛物线上, ∴a=- , ∴此抛物线解析式为:y=- (x-2)(x+2), ∵水面下降2m, ∴- (x-2)(x+2)=-2, ∴x1=2 ,x2=-2 , ∴下降之后的水面宽为:4 . ∴水面宽度增加了:4 -4. 故答案为:4 -4. 【分析】根据题意以AB为x轴,AB的垂直平分线为y轴建立平面直角坐标系(如图),依题可得:A(-2,0),B(2,0),C(0,2),再根据待定系数法求出经过A、B、C三点的抛物线解析式y=- (x-2)(x+2);由水面下降2m,求出下降之后的水面宽度,从而得出水面宽度增加值.
数学 试题推荐