题目

已知,如图,AB=CD,AB∥CD,BE=FD,求证:△ABF≌△CDE.                                                  答案:【考点】全等三角形的判定.                                      【分析】由BE=DF,两边加上EF,利用等式的性质得到BF=DE,再由AB与CD平行,利用两直线平行内错角相等得到一对角相等,利用SAS即可得证.                                        【解答】解:∵AB∥CD,                                          ∴∠B=∠D,                                                  ∵BE=DF,                                                    ∴BE+EF=DF+EF,即BF=DE,                                        在△ABF和△CDE中,                                          ,                                                 ∴△ABF≌△CDE(SAS).                                         【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.           
数学 试题推荐