题目

如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是(  ) A.6                           B.3                     C.2                     D.4.5 答案:C 【解析】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M知点P、M即为使PE+PM取得最小值的点,利用S菱形ABCD= AC•BD=AB•E′M求得E′M的长即可得答案. 【详解】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P, 则点P、M即为使PE+PM取得最小值的点, 则有PE+PM=PE′+PM=E′M, ∵四边形ABCD是菱形, ∴点E′在CD上, ∵AC=6,BD=6, ∴AB=, 由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M, 解得:E′M=2, 即PE+PM的最小值是2, 故选C. 【点睛】本题考查了轴对称——最短路径问题,涉及到菱形的性质、勾股定理等,确定出点P的位置是解题的关键.
数学 试题推荐