题目

如图10,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE. (1)求证:△ABE≌△ACE (2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由. 答案:(1)证明:∵AB=AC 点D为BC的中点 ∴∠BAE=∠CAE AE=AE ∴△ABE≌△ACE(SAS) (2)当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形 理由如下: ∵AE=2AD,∴AD=DE 又点D为BC中点,∴BD=CD ∴四边形ABEC为平行四形边 ∵AB=AC ∴四边形ABEC为菱形 (其他方法参照本方法给分)
数学 试题推荐