题目
如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E. (1)求证:DF⊥AC; (2)求tan∠E的值.
答案:(1)证明:如图,连接OC,CD, ∵BC是⊙O的直径, ∴∠BDC=90°, ∴CD⊥AB, ∵AC=BC, ∴AD=BD, ∵OB=OC, ∴OD是△ABC的中位线 ∴OD∥AC, ∵DF为⊙O的切线, ∴OD⊥DF, ∴DF⊥AC; (2)解:如图,连接BG, ∵BC是⊙O的直径, ∴∠BGC=90°, ∵∠EFC=90°=∠BGC, ∴EF∥BG, ∴∠CBG=∠E, Rt△BDC中,∵BD=3,BC=5, ∴CD=4, S△ABC=, 6×4=5BG, BG=, 由勾股定理得:CG==, ∴tan∠CBG=tan∠E===.