题目
求证:.
答案:活动:先让学生讨论探究证明方法,教师引导思考方向.教材中介绍了两种证明方法:证法一是从等式一边到另一边的证法,等式右边的非零因式1+sinα,在左边没有出现,可考虑左边式子的分子、分母同乘以1+sinx,再化简;在证法二中可以这样分析,要让算式成立,需证cos2x=(1+sinx)(1-sinx),即cos2x=1-sin2x,也就是sin2x+cos2x=1,由平方关系可知这个等式成立,将上述分析过程逆推便可以证得原式成立.证明三角恒等式的过程,实际上是化异为同的过程.这个过程往往从化简开始,因此在证明三角恒等式时,我们可以从最复杂处开始.证法一:由cosx≠0,知sinx≠±1,所以1+sinx≠0,于是左边==右边.所以原式成立.证法二:因为(1-sinx)(1+sinx)=1-sin2x=cos2x=cosxcosx,且1-sinx≠0,cosx≠0,所以. 教师启发学生进一步探究:除了证法一和证法二外你是否还有其他的证明方法.教师和学生一起讨论,由此可探究出证法三.依据“a-b=0a=b”来证明恒等式是常用的证明方法,由学生自己独立完成.证法三:因为==0,所以.点评:这是一道很有训练价值的经典例题,教师要充分利用好这个题目.从这个例题可以看出,证明一个三角恒等式的方法有很多.要证明一个等式,可以从它的任何一边开始,证得它等于另一边;还可以先证得另一个等式成立,从而推出需要证明的等式成立.