题目
如图,中,点在边上,,,垂直于的延长线于点,,,则边的长为_____.
答案: 【解析】 如图,延长BD到点G,使DG=BD,连接CG,则由线段垂直平分线的性质可得CB=CG,在EG上截取EF=EC,连接CF,则∠EFC=∠ECF,∠G=∠CBE,根据等腰三角形的性质和三角形的内角和定理可得∠EFC=∠A=2∠CBE,再根据三角形的外角性质和等腰三角形的判定可得FC=FG,设CE=EF=x,则可根据线段间的和差关系求出DF的长,进而可求出FC的长,然后根据勾股定理即可求出CD的长,再一次运用勾股定理即可求出答案. 【详解】 解:如图,延长BD到点G,使DG=BD,连接CG,则CB=CG,在EG上截取EF=EC,连接CF,则∠EFC=∠ECF,∠G=∠CBE, ∵EA=EB,∴∠A=∠EBA, ∵∠AEB=∠CEF, ∴∠EFC=∠A=2∠CBE=2∠G, ∵∠EFC=∠G+∠FCG, ∴∠G=∠FCG, ∴FC=FG, 设CE=EF=x,则AE=BE=11-x, ∴DE=8-(11-x)=x-3, ∴DF=x-(x-3)=3, ∵DG=DB=8, ∴FG=5,∴CF=5, 在Rt△CDF中,根据勾股定理,得, ∴. 故答案为:. 【点睛】 本题考查了等腰三角形的判定和性质、三角形的内角和定理和三角形的外角性质、勾股定理以及线段垂直平分线的性质等知识,具有一定的难度,正确添加辅助线、灵活应用上述知识是解题的关键.