题目

设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x≤1时,f(x)=2x-1,则f()+f(1)+f()+f(2)+f()=    . 答案:依题意知:函数f(x)为奇函数且周期为2, ∴f()+f(1)+f()+f(2)+f() =f()+f(1)+f(-)+f(0)+f() =f()+f(1)-f()+f(0)+f() =f()+f(1)+f(0) =-1+21-1+20-1 =. 答案:
数学 试题推荐