题目

如图1,已知抛物线的方程C1: (m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧. (1)若抛物线C1过点M(2, 2),求实数m的值; (2)在(1)的条件下,求△BCE的面积; (3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标; (4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.   答案:解:(1)m=4………………………………2分 (2):B(-2,0)C(4,0)E(0,2) ………… …………5分 (3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH最小. 设对称轴与x轴的交点为P,那么. 因此.解得.所以点H的坐标为.…………………8分 (4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′. 由于∠BCE=∠FBC,所以当,即时,△BCE∽△FBC. 设点F的坐标为,由,得. 解得x=m+2.所以F′(m+2, 0). 由,得.所以. 由,得. 整理,得0=16.此方程无解.………………10分 图2                  图3                   图4 ②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′, 由于∠EBC=∠CBF,所以,即时,△BCE∽△BFC. 在Rt△BFF′中,由FF′=BF′,得. 解得x=2m.所以F′.所以BF′=2m+2,. 由,得.解得. 综合①、②,符合题意的m为.
数学 试题推荐
最近更新