题目

(福建卷文20)已知{an}是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若列数{bn}满足b1=1,bn+1=bn+,求证:bn       ·bn+2<b2n+1. 答案:本小题考查等差数列、等比数列等基本知识,考查转化与化归思想,推理与运算能力. 解法一: (Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1, 所以数列{an}是以1为首项,公差为1的等差数列. 故an=1+(a-1)×1=n. (Ⅱ)由(Ⅰ)知:an=n从而bn+1-bn=2n. bn=(bn-bn-1)+(bn-1-bn-2)+­­­­­­­­­­­···+(b2-b1)+b1 =2n-1+2n-2+···+2+1==2n-1. 因为bn·bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2 =(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1) =-5·2n+4·2n =-2n<0, 所以bn·bn+2<b, 解法二:(Ⅰ)同解法一. (Ⅱ)因为b2=1, bn·bn+2- b=(bn+1-2n)(bn+1+2n+1)- b             =2n+1·bn-1-2n·bn+1-2n·2n+1 =2n(bn+1-2n+1) =2n(bn+2n-2n+1) =2n(bn-2n) =… =2n(b1-2) =-2n〈0, 所以bn-bn+2<b2n+1
数学 试题推荐
最近更新