题目
(本小题满分14分) 在数列中,,且对任意.,,成等差数列,其公差为。 (Ⅰ)若=,证明,,成等比数列() (Ⅱ)若对任意,,,成等比数列,其公比为。
答案:【解析】本小题主要考查等差数列的定义及通项公式,前n项和公式、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法。满分14分。 (Ⅰ)证明:由题设,可得。 所以 = =2k(k+1) 由=0,得 于是。 所以成等比数列。 (Ⅱ)证法一:(i)证明:由成等差数列,及成等比数列,得 当≠1时,可知≠1,k 从而 所以是等差数列,公差为1。 (Ⅱ)证明:,,可得,从而=1.由(Ⅰ)有 所以 因此, 以下分两种情况进行讨论: 当n为偶数时,设n=2m() 若m=1,则. 若m≥2,则 + 所以 (2)当n为奇数时,设n=2m+1() 所以从而··· 综合(1)(2)可知,对任意,,有 证法二:(i)证明:由题设,可得 所以 由可知。可得, 所以是等差数列,公差为1。 (ii)证明:因为所以。 所以,从而,。于是,由(i)可知所以是公差为1的等差数列。由等差数列的通项公式可得= ,故。 从而。 所以,由,可得 。 于是,由(i)可知 以下同证法一。