题目
已知函数f(x)=ex﹣x2﹣ax. (1)若曲线y=f(x)在点x=0处的切线斜率为1,求函数f(x)在[0,1]上的最值; (2)令g(x)=f(x)+(x2﹣a2),若x≥0时,g(x)≥0恒成立,求实数a的取值范围; (3)当a=0且x>0时,证明f(x)﹣ex≥xlnx﹣x2﹣x+1.
答案:解:(1)∵f′(x)=ex﹣2x﹣a,∴f′(0)=1﹣a=1,∴a=0, ∴f′(x)=ex﹣2x,记h(x)=ex﹣2x,∴h′(x)=ex﹣2,令h′(x)=0得x=ln2. 当0<x<ln2时,h′(x)<0,h(x)单减;当ln2<x<1时,h′(x)>0,h(x)单增, ∴h(x)min=h(ln2)=2﹣2ln2>0, 故f′(x)>0恒成立,所以f(x)在[0,1]上单调递增, ∴f(x)min=f(0)=1,f(x)max=f(1)=e﹣1. (2)∵g(x)=ex﹣(x+a)2,∴g′(x)=ex﹣x﹣a. 令m(x)=ex﹣x﹣a,∴m′(x)=ex﹣1, 当x≥0时,m′(x)≥0,∴m(x)在[0,+∞)上单增,∴m(x)min=m(0)=1﹣a. (i)当1﹣a≥0即a≤1时,m(x)≥0恒成立,即g′(x)≥0,∴g(x)在[0,+∞)上单增, ∴g(x)min=g(0)=1﹣≥0,解得﹣≤a≤,所以﹣≤a≤1. (ii)当1﹣a<0即a>1时,∵m(x)在[0,+∞)上单增,且m(0)=1﹣a<0, 当1<a<e2﹣2时,m(ln(a+2))=2﹣ln(2+a)>0, ∴∃x0∈(0,ln(a+2)),使m(x0)=0,即e=x0+a. 当x∈(0,x0)时,m(x)<0,即g′(x)<0,g(x)单减; 当x∈(x0,ln(a+2))时,m(x)>0,即g′(x)>0,g(x)单增. ∴g(x)min=g(x0)=e﹣(x0+a)2=e﹣e=e(1﹣e)≥0, ∴e≤2可得0<x0≤ln2,由e=x0+a, ∴a=e﹣x0. 记t(x)=ex﹣x,x∈(0,ln2], ∴t′(x)=ex﹣1>0,∴t(x)在(0,ln2]上单调递增, ∴t(x)≤t(ln2)=2﹣2ln2,∴1<a≤2﹣2ln2, 综上,a∈[﹣,2﹣ln2]. (3)证明:f(x)﹣ex≥xlnx﹣x2﹣x+1等价于ex﹣x2﹣ex≥xlnx﹣x2﹣x+1, 即ex﹣ex≥xlnx﹣x+1. ∵x>0,∴等价于﹣lnx﹣﹣e+1≥0. 令h(x)=﹣lnx﹣﹣e+1, 则h′(x)=. ∵x>0,∴ex﹣1>0. 当0<x<1时,h′(x)<0,h(x)单减; 当x>1时,h′(x)>0,h(x)单增. ∴h(x)在x=1处有极小值,即最小值, ∴h(x)≥h(1)=e﹣1﹣e+1=0, ∴a=0且x>0时,不等式f(x)﹣ex≥xlnx﹣x2﹣x+1成立.