题目
已知f(x)为二次函数,且.(1)求f(x)的表达式; (2)判断函数在(0,+∞)上的单调性,并证明.
答案:【答案】(1);(2)增函数,证明见解析.【解析】(1)利用题中所给的条件,先设出函数的解析式,利用,将式子化为恒等式,利用对应项系数相等,得到方程组,求得结果;(2)先化简函数解析式,利用单调性的定义,证明得到函数的单调性,得到结果.(1)设f(x)=ax2+bx+c(a≠0),由条件得:a(x+1)2+b(x+1)+c+a(x﹣1)2+b(x﹣1)+c=2x2﹣4x, 从而, 解得:, 所以f(x)=x2﹣2x﹣1; (2)函数g(x)=在(0,+∞)上单调递增. 理由如下:g(x)==,设设任意x1,x2∈(0,+∞),且x1<x2, 则g(x1)﹣g(x2)=﹣()=(x1﹣x2)(1+), ∵x1,x2∈(0,+∞),且x1<x2,∴x1﹣x2<0,1+>0,∴g(x1)﹣g(x2)<0,即g(x1)<g(x2),所以函数g(x)=在(0,+∞)上单调递增.