题目
如图,在直三棱柱中,是等腰直角三角形,,,点是侧棱的上一点.(1)证明:当点是的中点时,平面;(2)若二面角的余弦值为,求的长.
答案:【答案】(1)见证明;(2)【解析】(1)由已知利用线面垂直的判定可得平面,则;再由已知求得,,可得,则,从而证得结论;(2)以为坐标原点,,,为轴,轴,轴建立空间直角坐标系,设,然后利用二面角的余弦值为构造方程,求解得到的长.(1)证明:由题意:且,平面,则是的中点 ,又 同理,则平面(2)以为坐标原点,分别以,,为轴,轴,轴建立如图所示的空间直角坐标系设,则,,由条件易知平面,故取为平面的法向量设平面的法向量为,则且,,取,得由得,即