题目

如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.(1)求∠BAC的度数;(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;(3)在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积. 答案:【答案】(1)45°;(2)见解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°②36或.【解析】试题分析:(1)易得△ABC是等腰直角三角形,从而∠BAC=∠CBA=45°;(2)分当 B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解;(3)①先说明四边形OHEF是正方形,再利用△DOH∽△DFE求出EF的长,然后利用割补法求面积;②根据△EPC∽△EBA可求PC=4,根据△PDC∽△PCA可求PD •PA=PC2=16,再根据S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解.(1)解:(1)连接BC,∵AB是直径,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°; (2)解:∵,∴∠CDB=∠CDP=45°,CB= CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂线,∴CP=CB= CA, (3)① (Ⅰ)如图2,当 B在PA的中垂线上,且P在右时,∠ACD=15°;(Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;(Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;(Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°②(Ⅰ)如图6, , .(Ⅱ)如图7, , , . , . , , , .设BD=9k,PD=2k, , , , .
数学 试题推荐