题目
设甲、乙、丙3个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这3个协会中抽取6名运动员组队参加比赛.
(1)
求应从这3个协会中分别抽取的运动员的人数.
(2)
将抽取的6名运动员进行编号,编号分别为A1 , A2 , A3 , A4 , A5 , A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设事件A为“编号为A5和A6的2名运动员中至少有1人被抽到”,求事件A发生的概率.
答案: 解:分层抽样中,每个个体被抽到的可能性相同乙乒乓球协会的某运动员被抽到的概率 P=627+9+18=19
解:①从6名运动员中随机抽取2名的所有结果为:(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6)),(A5,A6),共15种;②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,则事件A包含:(A1,A5),(A1,A6),(A2,A5),(A2,A6),(A3,A5),(A3,A6),(A4,A5),(A4,A6)),(A5,A6)共9个基本事件,∴事件A发生的概率P= 915 = 35