题目
如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC的中点,DE⊥AB,垂足为E,交AC的延长线于点F.
(1)
求证:直线EF是⊙O的切线;
(2)
CF=5,cos∠A= ,求AE的长.
答案: 证明:如图,连结OD. ∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线
解:∵OD∥AB, ∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠A=cos∠FOD= ODOF = 25 ,设⊙O的半径为R,则 RR+5 = 25 ,解得R= 103 ,∴AB=2OD= 203 .在Rt△AEF中,∵∠AEF=90°,∴cos∠A= AEAF = AE5+203 = 25 ,∴AE= 143