题目
如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.
(1)
求证:∠C=90°;
(2)
当BC=3,sinA= 时,求AF的长.
答案: 解:连接OE,BE,∵DE=EF,∴ DE^=EF^∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°
解:在△ABC,∠C=90°,BC=3,sinA= 35∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA= OEOA = r5−r = 35∴r= 158∴AF=5﹣2× 158 = 54