题目
如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.
(1)
求证:AC平分∠DAB;
(2)
求证:PC=PF;
(3)
若tan∠ABC= ,AB=14,求线段PC的长.
答案: 证明:∵PD切⊙O于点C, ∴OC⊥PD, 又∵AD⊥PD, ∴OC∥AD, ∴∠ACO=∠DAC. ∵OC=OA, ∴∠ACO=∠CAO, ∴∠DAC=∠CAO, 即AC平分∠DAB
证明:∵AD⊥PD, ∴∠DAC+∠ACD=90°. 又∵AB为⊙O的直径, ∴∠ACB=90°. ∴∠PCB+∠ACD=90°, ∴∠DAC=∠PCB. 又∵∠DAC=∠CAO, ∴∠CAO=∠PCB. ∵CE平分∠ACB, ∴∠ACF=∠BCF, ∴∠CAO+∠ACF=∠PCB+∠BCF, ∴∠PFC=∠PCF, ∴PC=PF
解:∵∠PAC=∠PCB,∠P=∠P, ∴△PAC∽△PCB, ∴ PCPB=APPC . 又∵tan∠ABC= 43 , ∴ ACBC=43 , ∴ PCPB=43 , 设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7, ∵PC2+OC2=OP2, ∴(4k)2+72=(3k+7)2, ∴k=6 (k=0不合题意,舍去). ∴PC=4k=4×6=24.