题目

如图,在△ABC中,点D在边BC上,∠CAD=∠B,点E在边AB上,联结CE交AD于点H,点F在CE上,且满足CF•CE=CD•BC. (1) 求证:△ACF∽△ECA; (2) 当CE平分∠ACB时,求证: = . 答案: 证明:∵∠ACD=∠BCA,∠CAD=∠B, ∴△ACD∽△BCA, ∴ ACBC = CDAC , ∴AC2=CD•BC, ∵CF•CE=CD•BC, ∴AC2=CF•CE, ∴ ACCE = CFAC , ∵∠ACF=∠ECA, ∴△ACF∽△ECA 解: 根据 △ACD∽△BCA, 可知,∠ADC=∠BAC ∵当CE平分∠ACB,∴∠ACE=∠DCH,∴△ACE∽△DCH,∴ S△CDHS△CAE = (CDAC) 2= CD2AC2  ∵AC2=CD•BC,∴ S△CDHS△CAE = CDBC
数学 试题推荐