题目
如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在△ABC的外部,FB=FA,EA=EC,∠FBA=∠DBC=∠ECA.
(1)
①填空:△ACE∽∽;
(2)
求证:△CDE∽△CBA;
(3)
求证:△FBD≌△EDC;
(4)
若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.
答案: 【1】△ABF【2】△BCD
解:由①知,△ACE∽△BCD,∴ CECD=CACB ,即 CECA=CDCB ,∵∠ECA=∠DCB,∴∠ECD=∠ACB,∴△CDE∽△CBA
证明:∵△CDE∽△CBA,∴∠ABC=∠EDC,∵∠ABC=∠FBD,∴∠EDC=∠FBD,同理△BFD∽△BAC,∴∠FDB=∠ACB,∵∠ACB=∠ECD,∴∠FDB=∠ACB,在△FBD与△EDC中 {∠FDB=∠ECDBD=CD∠FBD=∠EDC ,∴△FBD≌△EDC;
解:四边形AFDE是菱形,理由:∵△FBD≌△EDC,∴FB=DE,DF=CE,∵FB=FA,EA=EC,∴FD=AE,FA=DE,∴四边形AFDE是平行四边形,连接AD,则AD平分∠BAC,即∠BAD=∠CAD,∵∠BAF=∠CAE,∴∠DAF=∠DAE,∵AF∥DE,∴∠DAF=∠ADE,∴∠EAD=∠ADE,∴EA=ED,∴▱AFDE是菱形.