如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.(1)说明:;(2)当点C、点A到y轴距离相等时,求点E坐标.(3)当的面积为时,求的值.
答案:解:(1)令y=0,则有-x2+2x+8=0.解得:x1=-2,x2=4∴OA=2,OB=4.过点O作OG∥AC交BE于G∴△CEG∽△OGD∴DCDO=CEOG∵DC=DO∴CE=0G∵OG∥AC∴△BOG∽△BAE∴OGAG=BOBA∵OB=4,OA=2∴OGAE=CEAE=OBAB=23;(2)由(1)知A(-2,0),且点C、点A到y轴的距离相等,∴C(2,8)设AC所在直线解析式为:y=kx+b把 A 、C两点坐标代入求得k=2,b=4所以y=2x+4分别过E、C作EF⊥x轴,CH⊥x轴,垂足分别为F、H由△AEF∽△ACH可求EF=245,OF=85,∴E点坐标为(85,245)(3)连接OE∵D是OC的中点,∴S△OCE=2S△CED∵S△OCE:S△AOC=CE:CA=2:5∴S△CED:S△AOC=1:5.∴S△AOC=5S△CED=8∴12×2×CH=8∴CH=8tan∠CAB=CHA0+OH=82+2=2