题目

在平面直角坐标系中,O为坐标原点,点A的坐标为(a,﹣a),点B坐标为(b,c),a,b,c满足 . (1)若a没有平方根,判断点A在第几象限并说明理由;(2)若点A到x轴的距离是点B到x轴距离的3倍,求点B的坐标;(3)点D的坐标为(4,﹣2),△OAB的面积是△DAB面积的2倍,求点B的坐标. 答案:解:(1)∵a没有平方根,∴a<0,∴﹣a>0,∴点A在第二象限;(2)解方程组3a-b+2c=8a-2b-c=-4,用a表示b、c得b=a,c=4﹣a,∴B点坐标为(a,4﹣a),∵点A到x轴的距离是点B到x轴距离的3倍,∴|﹣a|=3|4﹣a|,当a=3(4﹣a),解得a=3,则c=4﹣3=1,此时B点坐标为(3,1);当a=﹣3(4﹣a),解得a=6,则c=4﹣6=﹣2,此时B点坐标为(6,﹣2);综上所述,B点坐标为(3,1)或(6,﹣2);(3)∵点A的坐标为(a,﹣a),点B坐标为(a,4﹣a),∴AB=4,AB与y轴平行,∵点D的坐标为(4,﹣2),△OAB的面积是△DAB面积的2倍,∴点A、点B在y轴的右侧,即a>0,∴12×4×a=2×12×4×|4﹣a|,解得a=83或a=8,∴B点坐标为(83,43)或(8,﹣4).
数学 试题推荐