题目

如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比) 答案:解:过点A作AE⊥CC′于点E,交BB′于点F,过点B作BD⊥CC′于点D,则△AFB、△BDC、△AEC都是直角三角形,四边形AA′B′F,BB′C′D和BFED都是矩形,∴BF=BB′﹣B′F=BB′﹣AA′=310﹣110=200,CD=CC′﹣C′D=CC′﹣BB′=710﹣310=400,∵i1=1:2,i2=1:1,∴AF=2BF=400,BD=CD=400,又∵EF=BD=400,DE=BF=200,∴AE=AF+EF=800,CE=CD+DE=600,∴在Rt△AEC中,AC= AE2+CE2 = 8002+6002 =1000(米).答:钢缆AC的长度是1000米.
数学 试题推荐