题目
在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,
(1)
如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.
(2)
如图2所示,在1所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.
(3)
在2的条件下,若直线y=﹣2x﹣2分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.
答案: 【解答】解:如图1,∵AB与x轴平行,根据抛物线的对称性有AE=BE=1,∵∠AOB=90°,∴OE=12AB=1,∴A(﹣1,1)、B(1,1),把x=1时,y=1代入y=ax2得:a=1,∴抛物线的解析式y=x2,A、B两点的横坐标的乘积为xA•xB=﹣1
xA•xB=﹣1为常数,如图2,过A作AM⊥x轴于M,BN⊥x轴于N,∴∠AMO=∠BNO=90°,∴∠MAO+∠AOM=∠AOM+∠BON=90°,∴∠MAO=∠BON,∴△AMO∽△BON,∴AMON=OMBN,∴OM•ON=AM•BN,设A(xA,yA),B(xB,yB),∵A(xA,yA),B(xB,yB)在y=x2图象上,∴,yA=xA2,yB=xB2,∴﹣xA•xB=yA•yB=xA2•xB2,∴xA•xB=﹣1为常数;
设A(m,m2),B(n,n2),如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.∴AEOF=OEBF,即m2n=-mn2,整理得:mn(mn+1)=0,∵mn≠0,∴mn+1=0,即mn=﹣1.设直线AB的解析式为y=kx+b,联立y=kx+by=x2,得:x2﹣kx﹣b=0.∵m,n是方程的两个根,∴mn=﹣b.∴b=1.∵直线AB与y轴交于点D,则OD=1.易知C(0,﹣2),OC=2,∴CD=OC+OD=3.∵∠BPC=∠OCP,∴PD=CD=3.设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,解得a=0(舍去)或a=-125,当a=-125时,﹣2a﹣2=145,∴P(-125,145).