题目

某商场销售一种成本为每件20元的商品,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设商场销售该种商品每月获得利润为w(元),写出w与x之间的函数关系式;(2)如果商场想要销售该种商品每月获得2000元的利润,那么每月成本至少多少元?(3)为了保护环境,政府部门要求用更加环保的新产品替代该种商品,商场若销售新产品,每月销售量与销售价格之间的关系与原产品的销售情况相同,新产品为每件22元,同时对商场的销售量每月不小于150件的商场,政府部门给予每件3元的补贴,试求定价多少时,新产品每月可获得销售利润最大?并求最大利润. 答案:解:(1)由题意,得:w=(x﹣20)•y,=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,(2)由题意,得:﹣10x2+700x﹣10000=2000,解这个方程得:x1=30,x2=40,答:想要每月获得2000元的利润,销售单价应定为30元或40元.(3)当销售量每月不小于150件时,即﹣10x+500≥150,解得:x≤35,由题意,得:w=(x﹣22+3)•y=(x﹣19)•(﹣10x+500)=﹣10x2+690x﹣9500=﹣10(x﹣34.5)2+2402.5∴当定价34.5元时,新产品每月可获得销售利润最大值是2402.5元.
数学 试题推荐