题目

如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F. (1) 求证:△ABC≌△ADE; (2) 求∠FAE的度数; (3) 求证:CD=2BF+DE. 答案: 证明:∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,{AB=AD∠BAC=∠DAEAC=AE ,∴△BAC≌△DAE(SAS) 解:∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°, ∴∠FAE=∠FAC+∠CAE=45°+90°=135° 证明:延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,{BF=GF∠AFB=∠AFGAF=AF ,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,{∠GCA=∠DCA∠CGA=∠CDAAG=AD ,∴△CGA≌△CDA (AAS)∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.
数学 试题推荐