题目
如图,正方形ABCD中,AB=2,E是BC中点,CD上有一动点M,连接EM、BM,将△BEM沿着BM翻折得到△BFM.连接DF、CF,则DF+FC的最小值为_________.
答案: . 【分析】取BG=,连接FG,首先证明△BGF∽△BFC,从而可得到FG=FC,然后依据三角形的三边关系可知DF+FC=DF+FC≤DG,然后依据勾股定理求得DG的值即可. 【解答】解:如图所示:取BG=,连接FG. ∵BC=2,E是BC的中点, ∴BE=1. 由翻折的性质可知BF=BE=1. ∵BF=1,BC=2,GB=, ∴BF2=BC•GB. ∴. 又∵∠FBG=∠FBC, ∴△BGF∽△BFC, ∴==, ∴FG=FC. ∴DF+FC=DF+FC≤DG===. ∴DF+FC的最小值为.