题目

如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n). (1)求反比例函数和一次函数的解析式; (2)连结OA、OB,求△AOB的面积; (3)直接写出当y1<y2<0时,自变量x的取值范围. 答案:【考点】反比例函数与一次函数的交点问题. 【分析】(1)将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例函数解析式;将B坐标代入反比例解析式中求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出a与b的值,即可确定出一次函数解析式; (2)设直线AB与y轴交于点C,求得点C坐标,S△AOB=S△AOC+S△COB,计算即可; (3)由图象直接可得自变量x的取值范围. 【解答】解:(1)∵A(﹣2,1), ∴将A坐标代入反比例函数解析式y2=中,得m=﹣2, ∴反比例函数解析式为y=﹣; 将B坐标代入y=﹣,得n=﹣2, ∴B坐标(1,﹣2), 将A与B坐标代入一次函数解析式中,得, 解得a=﹣1,b=﹣1, ∴一次函数解析式为y1=﹣x﹣1; (2)设直线AB与y轴交于点C, 令x=0,得y=﹣1, ∴点C坐标(0,﹣1), ∴S△AOB=S△AOC+S△COB=×1×2+×1×1=; (3)由图象可得,当y1<y2<0时,自变量x的取值范围x>1. 【点评】本题属于反比例函数与一次函数的交点问题,涉及的知识有:待定系数法求函数解析式,三角形面积的求法,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.  
数学 试题推荐