题目
如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是 .
答案:16.【分析】根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,可得平行四边形ABCD的周长. 【解答】解:∵ABCD是平行四边形, ∴OA=OC, ∵OM⊥AC, ∴AM=MC. ∴△CDM的周长=AD+CD=8, ∴平行四边形ABCD的周长是2×8=16. 【点评】此题考查了平行四边形的性质及周长的计算,根据线段垂直平分线的性质,证得AM=MC是解题的关键.