题目

如图,正方形ABCD中,点E、F分别在边BC、CD上且AE=EF=FA,下列结论:①  ②CE=CF  ③∠AEB=750  ④BE+DF=EF  ⑤其中正确的是              (只填写序号)  答案:①②③⑤解析:∵AB=AD,AE=AF=EF,∴△ABE≌△ADF(HL),△AEF为等边三角形,∴BE=DF,又BC=CD,∴CE=CF,∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,∴∠AEB=90°﹣∠BAE=75°,∴①②③正确,在AD上取一点G,连接FG,使AG=GF,则∠DAF=∠GFA=15°,∴∠DGF=2∠DAF=30°,设DF=1,则AG=GF=2,DG=,∴AD=CD=2+,CF=CE=CD﹣DF=1+,∴EF=CF=+,而BE+DF=2,∴④错误,⑤∵△ABE+S△ADF=2×AD×DF=2+,S△CEF=CE×CF==2+,∴⑤正确.故答案为:①②③⑤. 
数学 试题推荐