题目
(12分)如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).(1)当t为何值时,四边形PCDQ为平行四边形?(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.
答案:解: (1)(5分)设t秒后,四边形PCDQ为平行四边形则 DQ="t,BP=2t," ∴PC=20-2t当DQ=PC时,即t="20-2t," t=(秒) ∴当t=秒时, 四边形PCDQ为平行四边形. (2)(7分)∵DQ∥BH,∴△DEQ∽△BEP∴①同理:由EF∥BH.得:②由DQ∥CH. 得:③由①②③得:∴BP=CH∴PH=PC+CH=PC+BP=BC=20()∴PH的长不变,为20.解析:略