题目

在等比数列{an}中,前n项和Sn=2n+c,则a12+a22+a32+…+an2等于_______________. 答案:(4n-1)  解析:当n≥2时,an=Sn-Sn-1=2n-1,∵{an}是等比数列,∴a1=1,公比q=2.∴{an2}也是等比数列,首项为1,公比为4,∴a12+a22+a32+…+an2==(4n-1).
数学 试题推荐