题目
10.关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根.其中假命题的个数是A.0 B.1 C.2 D.3
答案:A解析:据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0(1),作出函数y=|x2-1|的图象.结合函数的图象可知1,当t=0或t>1时方程有2个不等的根.2.当0<t<1时方程有4个根,3.当t=1时,方程有3个根,故当t=0时,代入方程(1),解得k=0此时方程(1)有两个不等根t=0或t=1,故此时方程有5个根:当方程(1)有两个不等正根时,即0<k<此时方程(1)有两根且均小1.故相应的满足方程|x2-1|=t的解有8个:当k=时,方程(1)有两个相等正根t=.相应的解有4个.