若f ( x ) = a x 2 + b x + c,( a,b,c∈R )在区间[ 0,1 ]上恒有| f ( x ) | ≤ 1。(1)对所有这样的f ( x ),求 | a | + | b | + | c | 的最大值;(2)试给出一个这样的f ( x ),使 | a | + | b | + | c | 确实取到上述最大值。
答案:解析:(1)依题设有| f ( 0 ) | = | c | ≤ 1,| f ( 1 ) | = | a + b + c | ≤ 1,| f () | = |++ c | ≤ 1,于是| a + b | = | a + b + c c | ≤ | a + b + c | + | c | ≤ 2,| a b | = | 3 ( a + b + c ) + 5 c 8 (++ c ) | ≤ 3 | a + b + c | + 5 | c | + 8 |++ c | ≤ 3+5+8 = 16,从而,当a b ≥ 0时,| a | + | b | = | a + b |,∴ | a | + | b | + | c | = | a + b | + | c | ≤ 2 + 1 = 3;当a b < 0时,| a | + | b | = | a b |,∴ | a | + | b | + | c | = | a b | + | c | ≤ 16 + 1 = 17。∴ max { | a | + | b | + | c | } = 17。(2)当a = 8,b = 8,c = 1时,f ( x ) = 8 x 2 8 x + 1 = 8 ( x ) 2 1,∴ 当x∈[ 0,1 ]时,有| 8 x 2 8 x + 1 | ≤ 1,此时| a | + | b | + | c | = 8 + 8 + 1 = 17。